A Multilevel Spectral Framework for Scalable Vectorless Power/Thermal Integrity Verification

Author:

Zhao Zhiqiang1ORCID,Feng Zhuo1ORCID

Affiliation:

1. Stevens Institute of Technology, Hoboken, New Jersey, USA

Abstract

Vectorless integrity verification is becoming increasingly critical to the robust design of nanoscale integrated circuits. This article introduces a general vectorless integrity verification framework that allows computing the worst-case voltage drops or temperature (gradient) distributions across the entire chip under a set of local and global workload (power density) constraints. To address the computational challenges introduced by the large power grids and three-dimensional mesh-structured thermal grids, we propose a novel spectral approach for highly scalable vectorless verification of large chip designs by leveraging a hierarchy of almost linear-sized spectral sparsifiers of input grids that can well retain effective resistances between nodes. As a result, the vectorless integrity verification solution obtained on coarse-level problems can effectively help compute the solution of the original problem. Our approach is based on emerging spectral graph theory and graph signal processing techniques, which consists of a graph topology sparsification and graph coarsening phase, an edge weight scaling phase, as well as a solution refinement procedure. Extensive experimental results show that the proposed vectorless verification framework can efficiently and accurately obtain worst-case scenarios in even very large designs.

Funder

National Science Foundation

Publisher

Association for Computing Machinery (ACM)

Subject

Electrical and Electronic Engineering,Computer Graphics and Computer-Aided Design,Computer Science Applications

Reference46 articles.

1. Spectral sparsification of graphs

2. A unifying framework for spectrum-preserving graph sparsification and coarsening;Hermsdorff Gecia Bravo;Advances in Neural Information Processing Systems,2019

3. Graph Coarsening with Neural Networks;Cai Chen;International Conference on Learning Representations,2021

4. Algebraic Distance on Graphs

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3