Robust architectural support for transactional memory in the power architecture

Author:

Cain Harold W.1,Michael Maged M.1,Frey Brad2,May Cathy1,Williams Derek2,Le Hung2

Affiliation:

1. IBM Research, Yorktown Heights, NY

2. IBM STG, Austin, TX

Abstract

On the twentieth anniversary of the original publication [10], following ten years of intense activity in the research literature, hardware support for transactional memory (TM) has finally become a commercial reality, with HTM-enabled chips currently or soon-to-be available from many hardware vendors. In this paper we describe architectural support for TM added to a future version of the Power ISA™. Two imperatives drove the development: the desire to complement our weakly-consistent memory model with a more friendly interface to simplify the development and porting of multithreaded applications, and the need for robustness beyond that of some early implementations. In the process of commercializing the feature, we had to resolve some previously unexplored interactions between TM and existing features of the ISA, for example translation shootdown, interrupt handling, atomic read-modify-write primitives, and our weakly consistent memory model. We describe these interactions, the overall architecture, and discuss the motivation and rationale for our choices of architectural semantics, beyond what is typically found in reference manuals.

Publisher

Association for Computing Machinery (ACM)

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Ordered Scheduling in Control-Flow Distributed Transactional Memory;Lecture Notes in Computer Science;2023

2. LosaTM: A Hardware Transactional Memory Integrated With a Low-Overhead Scenario-Awareness Conflict Manager;IEEE Transactions on Parallel and Distributed Systems;2022-12-01

3. High-performance and balanced parallel graph coloring on multicore platforms;The Journal of Supercomputing;2022-11-07

4. Dynamic scheduling in distributed transactional memory;Distributed Computing;2021-11-20

5. Processing Distributed Transactions in a Predefined Order;International Conference on Distributed Computing and Networking 2021;2021-01-05

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3