Zombie memory: Extending memory lifetime by reviving dead blocks

Author:

Azevedo Rodolfo1,Davis John D.2,Strauss Karin2,Gopalan Parikshit2,Manasse Mark2,Yekhanin Sergey2

Affiliation:

1. University of Campinas

2. Microsoft Research

Abstract

Zombie is an endurance management framework that enables a variety of error correction mechanisms to extend the lifetimes of memories that suffer from bit failures caused by wearout, such as phase-change memory (PCM). Zombie supports both single-level cell (SLC) and multi-level cell (MLC) variants. It extends the lifetime of blocks in working memory pages (primary blocks) by pairing them with spare blocks, i.e., working blocks in pages that have been disabled due to exhaustion of a single block's error correction resources, which would be 'dead' otherwise. Spare blocks adaptively provide error correction resources to primary blocks as failures accumulate over time. This reduces the waste caused by early block failures, making working blocks in discarded pages a useful resource. Even though we use PCM as the target technology, Zombie applies to any memory technology that suffers stuck-at cell failures. This paper describes the Zombie framework, a combination of two new error correction mechanisms (ZombieXOR for SLC and ZombieMLC for MLC) and the extension of two previously proposed SLC mechanisms (ZombieECP and ZombieERC). The result is a 58% to 92% improvement in endurance for Zombie SLC memory and an even more impressive 11x to 17x improvement for ZombieMLC, both with performance overheads of only 0.1% when memories using prior error correction mechanisms reach end of life.

Funder

Conselho Nacional de Desenvolvimento Científico e Tecnológico

FAEPEX

Publisher

Association for Computing Machinery (ACM)

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Hard Error Correction in STT-MRAM;2024 29th Asia and South Pacific Design Automation Conference (ASP-DAC);2024-01-22

2. ECC cache;Proceedings of the 39th International Conference on Computer-Aided Design;2020-11-02

3. Block Cooperation;ACM Transactions on Architecture and Code Optimization;2018-09-30

4. REMAP;Proceedings of the International Symposium on Memory Systems;2017-10-02

5. Balancing the Lifetime and Storage Overhead on Error Correction for Phase Change Memory;PLOS ONE;2015-07-09

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3