Affiliation:
1. University of Michigan
Abstract
Multiple networks have been used in several processor implementations to scale bandwidth and ensure protocol-level deadlock freedom for different message classes. In this paper, we observe that a multiple-network design is also attractive from a power perspective and can be leveraged to achieve energy proportionality by effective power gating.
Unlike a single-network design, a multiple-network design is more amenable to power gating, as its subnetworks (subnets) can be power gated without compromising the connectivity of the network. To exploit this opportunity, we propose the Catnap architecture which consists of synergistic subnet selection and power-gating policies. Catnap maximizes the number of consecutive idle cycles in a router, while avoiding performance loss due to overloading a subnet.
We evaluate a 256-core processor with a concentrated mesh topology using synthetic traffic and 35 applications. We show that the average network power of a power-gating optimized multiple-network design with four subnets could be 44% lower than a bandwidth equivalent single-network design for an average performance cost of about 5%.
Funder
National Science Foundation
Division of Computing and Communication Foundations
Publisher
Association for Computing Machinery (ACM)
Cited by
21 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献