Gradient-Based Adversarial Training on Transformer Networks for Detecting Check-Worthy Factual Claims

Author:

Meng Kevin1ORCID,Jimenez Damian2ORCID,Devasier Jacob Daniel2ORCID,Naraparaju Sai Sandeep2ORCID,Arslan Fatma2ORCID,Obembe Daniel2ORCID,Li Chengkai2ORCID

Affiliation:

1. Massachusetts Institute of Technology, United States

2. The University of Texas at Arlington, United States

Abstract

This paper presents the latest developments to ClaimBuster's claim-spotting model, which tackles the critical task of identifying check-worthy claims from large streams of information. We introduce the first adversarially-regularized, transformer-based claim-spotting model, which achieves state-of-the-art results on several benchmark datasets. In addition to analyzing model performance metrics, we also quantitatively and qualitatively analyze the impact of ClaimBuster's real-world deployment. Moreover, to help facilitate reproducibility and community engagement, we publicly release our codebase, dataset, data curation platform, API, Google Colab notebooks, and various ClaimBuster-based demo systems, at claimbuster.org.

Publisher

Association for Computing Machinery (ACM)

Reference45 articles.

1. Martin Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, et al. 2016. TensorFlow: A system for large-scale machine learning. In OSDI. 265–283.

2. Tariq Alhindi, Brennan McManus, and Smaranda Muresan. 2021. What to Fact-Check: Guiding Check-Worthy Information Detection in News Articles through Argumentative Discourse Structure. In Proceedings of the 22nd Annual Meeting of the Special Interest Group on Discourse and Dialogue, Haizhou Li, Gina-Anne Levow, Zhou Yu, Chitralekha Gupta, Berrak Sisman, Siqi Cai, David Vandyke, Nina Dethlefs, Yan Wu, and Junyi Jessy Li (Eds.). Association for Computational Linguistics, Singapore and Online, 380–391.

3. Hunt Allcott and Matthew Gentzkow. 2017. Social Media and Fake News in the 2016 Election. Working Paper 23089. National Bureau of Economic Research.

4. Alberto Barrón-Cedeño, Firoj Alam, Andrea Galassi, Giovanni Da San Martino, Preslav Nakov, Tamer Elsayed, Dilshod Azizov, Tommaso Caselli, Gullal S. Cheema, Fatima Haouari, Maram Hasanain, Mucahid Kutlu, Chengkai Li, Federico Ruggeri, Julia Maria Struß, and Wajdi Zaghouani. 2023. Overview of the CLEF–2023 CheckThat! Lab on Checkworthiness, Subjectivity, Political Bias, Factuality, and Authority of News Articles and Their Source. In Experimental IR Meets Multilinguality, Multimodality, and Interaction, Avi Arampatzis, Evangelos Kanoulas, Theodora Tsikrika, Stefanos Vrochidis, Anastasia Giachanou, Dan Li, Mohammad Aliannejadi, Michalis Vlachos, Guglielmo Faggioli, and Nicola Ferro (Eds.). Springer Nature Switzerland, Cham, 251–275.

5. Alberto Barrón-Cedeño, Tamer Elsayed, Preslav Nakov, Giovanni Da San Martino, Maram Hasanain, Reem Suwaileh, Fatima Haouari, Nikolay Babulkov, Bayan Hamdan, Alex Nikolov, Shaden Shaar, and Zien Sheikh Ali. 2020. Overview of CheckThat! 2020 — Automatic Identification and Verification of Claims in Social Media. In Proceedings of the 11th International Conference of the CLEF Association: Experimental IR Meets Multilinguality, Multimodality, and Interaction (CLEF ’2020). Thessaloniki, Greece.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3