Affiliation:
1. University of Pennsylvania, Philadelphia, PA
2. Rice University, Houston, TX
3. University of Illinois, Champaign, IL
Abstract
While model checking of pushdown systems is by now an established technique in software verification, temporal logics and automata traditionally used in this area are unattractive on two counts. First, logics and automata traditionally used in model checking cannot express requirements such as pre/post-conditions that are basic to analysis of software. Second, unlike in the finite-state world, where the μ-calculus has a symbolic model-checking algorithm and serves as an “assembly language” to which temporal logics can be compiled, there is no common formalism—either fixpoint-based or automata-theoretic—to model-check requirements on pushdown models. In this article, we introduce a new theory of temporal logics and automata that addresses the above issues, and provides a unified foundation for the verification of pushdown systems.
The key idea here is to view a program as a generator of structures known as
nested trees
as opposed to trees. A fixpoint logic (called N
T
-μ) and a class of automata (called
nested tree automata
) interpreted on languages of these structures are now defined, and branching-time model-checking is phrased as language inclusion and membership problems for these languages. We show that N
T
-μ and nested tree automata allow the specification of a new frontier of requirements usable in software verification. At the same time, their model checking problem has the same worst-case complexity as their traditional analogs, and can be solved symbolically using a fixpoint computation that generalizes, and includes as a special case, “summary”-based computations traditionally used in interprocedural program analysis. We also show that our logics and automata define a robust class of languages—in particular, just as the μ-calculus is equivalent to alternating parity automata on trees, NT-μ is equivalent to alternating parity automata on nested trees.
Funder
National Science Foundation
Publisher
Association for Computing Machinery (ACM)
Cited by
15 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献