Hybrid Private Record Linkage

Author:

Rao Fang-Yu1,Cao Jianneng2,Bertino Elisa1,Kantarcioglu Murat3

Affiliation:

1. Department of Computer Science, Purdue University, West Lafayette, IN, USA

2. DBS Bank, Singapore, Singapore

3. Department of Computer Science, University of Texas at Dallas, Richardson, TX, USA

Abstract

Private record linkage protocols allow multiple parties to exchange matching records, which refer to the same entities or have similar values, while keeping the non-matching ones secret. Conventional protocols are based on computationally expensive cryptographic primitives and therefore do not scale. To address these scalability issues, hybrid protocols have been proposed that combine differential privacy techniques with secure multiparty computation techniques. However, a drawback of such protocols is that they disclose to the parties both the matching records and the differentially private synopses of the datasets involved in the linkage. Consequently, differential privacy is no longer always satisfied. To address this issue, we propose a novel framework that separates the private synopses from the matching records. The two parties do not access the synopses directly, but still use them to efficiently link records. We theoretically prove the security of our framework under the state-of-the-art privacy notion of differential privacy for record linkage (DPRL). In addition, we develop a simple but effective strategy for releasing private synopses. Extensive experimental results show that our framework is superior to the existing methods in terms of efficiency.

Publisher

Association for Computing Machinery (ACM)

Subject

Safety, Risk, Reliability and Quality,General Computer Science

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Security with Privacy;Encyclopedia of Complexity and Systems Science Series;2023

2. More Sparking Soundex-Based Privacy-Preserving Record Linkage;Algorithmic Aspects of Cloud Computing;2023

3. Efficient Privacy Preserving Record Linkage at Scale using Apache Spark;2022 IEEE International Conference on Big Data (Big Data);2022-12-17

4. A Credit Conflict Detection Model Based on Decision Distance and Probability Matrix;Wireless Communications and Mobile Computing;2022-01-07

5. Privacy-Preserving Record Linkage Using Local Sensitive Hash and Private Set Intersection;Lecture Notes in Computer Science;2022

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3