End-to-end Learned, Optically Coded Super-resolution SPAD Camera

Author:

Sun Qilin1,Zhang Jian2,Dun Xiong3,Ghanem Bernard1,Peng Yifan4,Heidrich Wolfgang1

Affiliation:

1. King Abdullah University of Science and Technology, KAUST, Thuwal, Saudi Arabia

2. Peking University, Shenzhen, China

3. Tongji University, Shanghai, China

4. Stanford University, Stanford, CA, USA

Abstract

Single Photon Avalanche Photodiodes (SPADs) have recently received a lot of attention in imaging and vision applications due to their excellent performance in low-light conditions, as well as their ultra-high temporal resolution. Unfortunately, like many evolving sensor technologies, image sensors built around SPAD technology currently suffer from a low pixel count. In this work, we investigate a simple, low-cost, and compact optical coding camera design that supports high-resolution image reconstructions from raw measurements with low pixel counts. We demonstrate this approach for regular intensity imaging, depth imaging, as well transient imaging. Our method uses an end-to-end framework to simultaneously optimize the optical design and a reconstruction network for obtaining super-resolved images from raw measurements. The optical design space is that of an engineered point spread function (implemented with diffractive optics), which can be considered an optimized anti-aliasing filter to preserve as much high-resolution information as possible despite imaging with a low pixel count, low fill-factor SPAD array. We further investigate a deep network for reconstruction. The effectiveness of this joint design and reconstruction approach is demonstrated for a range of different applications, including high-speed imaging, and time of flight depth imaging, as well as transient imaging. While our work specifically focuses on low-resolution SPAD sensors, similar approaches should prove effective for other emerging image sensor technologies with low pixel counts and low fill-factors.

Funder

Global Collaborative Research, King Abdullah University of Science and Technology

Publisher

Association for Computing Machinery (ACM)

Subject

Computer Graphics and Computer-Aided Design

Cited by 50 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3