Affiliation:
1. TU Wien, Wien, Austria
2. Free University of Bozen-Bolzano, Bolzano, Italy
Abstract
In this article, we consider the setting of graph-structured data that evolves as a result of operations carried out by users or applications. We study different reasoning problems, which range from deciding whether a given sequence of actions preserves the satisfaction of a given set of integrity constraints, for every possible initial data instance, to deciding the (non)existence of a sequence of actions that would take the data to an (un)desirable state, starting either from a specific data instance or from an incomplete description of it. For describing states of the data instances and expressing integrity constraints on them, we use description logics (DLs) closely related to the two-variable fragment of first-order logic with counting quantifiers. The updates are defined as
actions
in a simple yet flexible language, as finite sequences of conditional insertions and deletions, which allow one to use complex DL formulas to select the (pairs of) nodes for which (node or arc) labels are added or deleted. We formalize the preceding data management problems as a static verification problem and several planning problems and show that, due to the adequate choice of formalisms for describing actions and states of the data, most of these data management problems can be effectively reduced to the (un)satisfiability of suitable formulas in decidable logical formalisms. Leveraging this, we provide algorithms and tight complexity bounds for the formalized problems, both for expressive DLs and for a variant of the popular DL-Lite, advocated for data management in recent years.
Publisher
Association for Computing Machinery (ACM)
Subject
Computational Mathematics,Logic,General Computer Science,Theoretical Computer Science
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献