Mitigating the Impact of Inaccurate Feedback in Dynamic Learning-to-Rank: A Study of Overlooked Interesting Items

Author:

Zhang Chenhao1,Chen Weitong2,Zhang Wei Emma2,Xu Miao1

Affiliation:

1. University of Queensland, Brisbane, Australia

2. University of Adelaide, Adelaide, Australia

Abstract

Dynamic Learning-to-Rank (DLTR) is a method of updating a ranking policy in real-time based on user feedback, which may not always be accurate. Although previous DLTR work has achieved fair and unbiased DLTR under inaccurate feedback, they face the trade-off between fairness and user utility and also have limitations in the setting of feeding items. Existing DLTR works improve ranking utility by eliminating bias from inaccurate feedback on observed items, but the impact of another pervasive form of inaccurate feedback, overlooked or ignored interesting items, remains unclear. For example, users may browse the rankings too quickly to catch interesting items or miss interesting items because the snippets are not optimized enough. This phenomenon raises two questions: i) Will overlooked interesting items affect the ranking results? ii) Is it possible to improve utility without sacrificing fairness if these effects are eliminated? These questions are particularly relevant for small and medium-sized retailers who are just starting out and may have limited data, leading to the use of inaccurate feedback to update their models. In this paper, we find that inaccurate feedback in the form of overlooked interesting items has a negative impact on DLTR performance in terms of utility. To address this, we treat the overlooked interesting items as noise and propose a novel DLTR method, the Co-teaching Rank (CoTeR), that has good utility and fairness performance when inaccurate feedback is present in the form of overlooked interesting items. Our solution incorporates a co-teaching-based component with a customized loss function and data sampling strategy, as well as a mean pooling strategy to further accommodate newly added products without historical data. Through experiments, we demonstrate that CoTeRx not only enhances utilities but also preserves ranking fairness, and can smoothly handle newly introduced items.

Publisher

Association for Computing Machinery (ACM)

Reference78 articles.

1. Aman Agarwal Kenta Takatsu Ivan Zaitsev and Thorsten Joachims. 2019. A General Framework for Counterfactual Learning-to-Rank. In SIGIR.

2. Qingyao Ai Keping Bi Cheng Luo Jiafeng Guo and W. Bruce Croft. 2018. Unbiased Learning to Rank with Unbiased Propensity Estimation. In SIGIR.

3. Devansh Arpit Stanisław Jastrzębski Nicolas Ballas David Krueger Emmanuel Bengio Maxinder S. Kanwal Tegan Maharaj Asja Fischer Aaron Courville Yoshua Bengio and Simon Lacoste-Julien. 2017. A Closer Look at Memorization in Deep Networks. In ICML.

4. Ricardo Baeza-Yates. 2020. Bias in Search and Recommender Systems. In RecSys.

5. Representation Learning: A Review and New Perspectives

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3