Affiliation:
1. ETH Zürich, Switzerland
Abstract
Importance splitting is a simulation technique to estimate very small entrance probabilities for Markov processes by splitting sample paths at various stages before reaching the set of interest. This can be done in many ways, yielding different variants of the method. In this context, we propose a new one, called fixed number of successes. We prove unbiasedness for the new and some known variants, because in many papers, the proof is based on an incorrect argument. Further, we analyze its behavior in a simplified setting in terms of efficiency and asymptotics in comparison to the standard variant. The main difference is that it controls the imprecision of the estimator rather than the computational effort. Our analysis and simulation examples show that it is rather robust in terms of parameter choice and we present a two-stage procedure which also yields confidence intervals.
Publisher
Association for Computing Machinery (ACM)
Subject
Computer Science Applications,Modeling and Simulation
Cited by
29 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献