1. Martín Abadi Ashish Agarwal Paul Barham Eugene Brevdo Zhifeng Chen Craig Citro Greg S. Corrado Andy Davis Jeffrey Dean Matthieu Devin Sanjay Ghemawat Ian Goodfellow Andrew Harp Geoffrey Irving Michael Isard Yangqing Jia Rafal Jozefowicz Lukasz Kaiser Manjunath Kudlur Josh Levenberg Dan Mané Rajat Monga Sherry Moore Derek Murray Chris Olah Mike Schuster Jonathon Shlens Benoit Steiner Ilya Sutskever Kunal Talwar Paul Tucker Vincent Vanhoucke Vijay Vasudevan Fernanda Viégas a Oriol Vinyals Pete Warden Martin Wattenberg Martin Wicke Yuan Yu and Xiaoqiang Zheng. 2015. TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. (2015). http://tensorflow.org/.Software available from tensorflow.org.
2. Saleema Amershi, Max Chickering, Steven Mark Drucker, Bongshin Lee, Patrice Y. Simard, and Jina Suh. 2015. ModelTracker: Redesigning performance analysis tools for machine learning. In Proceedings of the 33rd Annual ACM Conference on Human Factors in Computing Systems, CHI 2015, Seoul, Republic of Korea, April 18-23, 2015, Bo Begole, Jinwoo Kim, Kori Inkpen, and Woontack Woo (Eds.). ACM, 337–346. DOI:10.1145/2702123.2702509
3. Explainable artificial intelligence (XAI): Concepts, taxonomies, opportunities and challenges toward responsible AI;Arrieta Alejandro Barredo;Information Fusion,2020
4. Su Lin Blodgett, Solon Barocas, Hal Daumé III, and Hanna Wallach. 2020. Language (Technology) is power: A critical survey of “Bias” in NLP. In Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. 5454–5476.
5. Tolga Bolukbasi, Kai-Wei Chang, James Zou, Venkatesh Saligrama, and Adam Kalai. 2016. Man is to computer programmer as woman is to homemaker? Debiasing word embeddings. In Proceedings of the 30th International Conference on Neural Information Processing Systems. 4356–4364.