Energy Efficient Computing Systems: Architectures, Abstractions and Modeling to Techniques and Standards

Author:

Muralidhar Rajeev1ORCID,Borovica-Gajic Renata2,Buyya Rajkumar2

Affiliation:

1. The University of Melbourne and Amazon Web Services, Australia

2. The University of Melbourne, Parkville, Victoria, Australia

Abstract

Computing systems have undergone a tremendous change in the last few decades with several inflexion points. While Moore’s law guided the semiconductor industry to cram more and more transistors and logic into the same volume, the limits of instruction-level parallelism (ILP) and the end of Dennard’s scaling drove the industry towards multi-core chips. More recently, we have entered the era of domain-specific architectures (DSA) and chips for new workloads like artificial intelligence (AI) and machine learning (ML). These trends continue, arguably with other limits, along with challenges imposed by tighter integration, extreme form factors and increasingly diverse workloads, making systems more complex to architect, design, implement and optimize from an energy efficiency perspective. Energy efficiency has now become a first order design parameter and constraint across the entire spectrum of computing devices. Many research surveys have gone into different aspects of energy efficiency techniques implemented in hardware and microarchitecture across devices, servers, HPC/cloud, data center systems along with improved software, algorithms, frameworks, and modeling energy/thermals. Somewhat in parallel, the semiconductor industry has developed techniques and standards around specification, modeling/simulation, benchmarking and verification of complex chips; these areas have not been addressed in detail by previous research surveys. This survey aims to bring these domains holistically together, present the latest in each of these areas, highlight potential gaps and challenges, and discuss opportunities for the next generation of energy efficient systems. The survey is composed of a systematic categorization of key aspects of building energy efficient systems - (1) specification - the ability to precisely specify the power intent, attributes or properties at different layers (2) modeling and simulation of the entire system or subsystem (hardware or software or both) so as to be able to experiment with possible options and perform what-if analysis, (3) techniques used for implementing energy efficiency at different levels of the stack, (4) verification techniques used to provide guarantees that the functionality of complex designs are preserved, and (5) energy efficiency benchmarks, standards and consortiums that aim to standardize different aspects of energy efficiency, including cross-layer optimizations.

Publisher

Association for Computing Machinery (ACM)

Subject

General Computer Science,Theoretical Computer Science

Reference156 articles.

1. R 2011 AMD Claims ‘Fastest Graphics Card in the World’

2. 01.org. 2020. Intel® dynamic platform and thermal framework (DPTF). (2020). Retrieved from https://01.org/intel-dynamic-platform-and-thermal-framework-dptf-chromium-os/documentation/implementation-design-and-source-code-organization.

3. TrueNorth: Design and Tool Flow of a 65 mW 1 Million Neuron Programmable Neurosynaptic Chip

4. AMD. 2019. Workload tuning guide for AMD EPYC™ 7002 series processor based servers. (2019). Retrieved from https://developer.amd.com/resources/epyc-resources/epyc-tuning-guides/.

5. Validity of the single processor approach to achieving large scale computing capabilities

Cited by 22 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3