Graph-based Multimodal Ranking Models for Multimodal Summarization

Author:

Zhu Junnan1ORCID,Xiang Lu1,Zhou Yu2,Zhang Jiajun3,Zong Chengqing1

Affiliation:

1. National Laboratory of Pattern Recognition, Institute of Automation, CAS, School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing, China

2. National Laboratory of Pattern Recognition, Institute of Automation, CAS, School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing Fanyu Technology Co., Ltd, Beijing, China

3. National Laboratory of Pattern Recognition, Institute of Automation, CAS, School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing Academy of Artificial Intelligence, Beijing, China

Abstract

Multimodal summarization aims to extract the most important information from the multimedia input. It is becoming increasingly popular due to the rapid growth of multimedia data in recent years. There are various researches focusing on different multimodal summarization tasks. However, the existing methods can only generate single-modal output or multimodal output. In addition, most of them need a lot of annotated samples for training, which makes it difficult to be generalized to other tasks or domains. Motivated by this, we propose a unified framework for multimodal summarization that can cover both single-modal output summarization and multimodal output summarization. In our framework, we consider three different scenarios and propose the respective unsupervised graph-based multimodal summarization models without the requirement of any manually annotated document-summary pairs for training: (1) generic multimodal ranking, (2) modal-dominated multimodal ranking, and (3) non-redundant text-image multimodal ranking. Furthermore, an image-text similarity estimation model is introduced to measure the semantic similarity between image and text. Experiments show that our proposed models outperform the single-modal summarization methods on both automatic and human evaluation metrics. Besides, our models can also improve the single-modal summarization with the guidance of the multimedia information. This study can be applied as the benchmark for further study on multimodal summarization task.

Publisher

Association for Computing Machinery (ACM)

Subject

General Computer Science

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3