Modeling dynamics in agile software development

Author:

Cao Lan1,Ramesh Balasubramaniam2,Abdel-Hamid Tarek3

Affiliation:

1. Old Dominion University, Norfolk, VA

2. Georgia State University, Atlanta, GA

3. Naval Postgraduate School, Monterey, CA

Abstract

Changes in the business environment such as turbulent market forces, rapidly evolving system requirements, and advances in technology demand agility in the development of software systems. Though agile approaches have received wide attention, empirical research that evaluates their effectiveness and appropriateness is scarce. Further, research to-date has investigated individual practices in isolation rather than as an integrated system. Addressing these concerns, we develop a system dynamics simulation model that considers the complex interdependencies among the variety of practices used in agile development. The model is developed on the basis of an extensive review of the literature as well as quantitative and qualitative data collected from real projects in nine organizations. We present the structure of the model focusing on essential agile practices. The validity of the model is established based on extensive structural and behavioral validation tests. Insights gained from experimentation with the model answer important questions faced by development teams in implementing two unique practices used in agile development. The results suggest that due to refactoring, the cost of implementing changes to a system varies cyclically and increases during later phases of development. Delays in refactoring also increase costs and decrease development productivity. Also, the simulation shows that pair programming helps complete more tasks and at a lower cost. The systems dynamics model developed in this research can be used as a tool by IS organizations to understand and analyze the impacts of various agile development practices and project management strategies.

Publisher

Association for Computing Machinery (ACM)

Subject

General Computer Science,Management Information Systems

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3