Static analysis of the worst-case memory performance for irregular codes with indirections

Author:

Andrade Diego1,Fraguela Basilio B.1,Doallo Ramón1

Affiliation:

1. Universidade da Coruña, Spain

Abstract

Real-time systems are subject to timing constraints, whose upper bound is given by the Worst-Case Execution Time (WCET). Cache memory behavior is difficult to predict analytically and estimating a safe and precise worst-case value is even more challenging. The worst-case memory performance (WCMP) component of the WCET can only be estimated with the precise knowledge of the stream of data addresses accessed by the code, which is determined by the access patterns and the base addresses of the data structures accessed. The regularity of strided access patterns simplifies their analysis, as they are characterized by relatively few parameters, which are often available at compile time. Unfortunately codes may exhibit irregular access patterns, which are much more difficult to statically analyze. As for the base addresses of the data structures, they are not always available at compile-time for many reasons: stack variables, dynamically allocated memory, modules compiled separately, etc. This article addresses these problems by presenting a model that predicts an %safe and upper bound of the data cache performance for codes both with regular and irregular access patterns, which is valid for any possible base addresses of the data structures. The model analyzes irregular access patterns due to the presence of indirections in the code and it can provide two kinds of predictions: a safe hard boundary that is suitable for hard real-time systems and a soft boundary whose safeness is not guaranteed but which is valid most of the times. In fact, in all our experiments the number of misses was below the soft boundary predicted by the model. This turns this soft boundary prediction into a valuable tool, particularly for non and soft real-time systems, which tolerate a percentage of the runs exceeding their deadlines.

Funder

Galician Government under projects Consolidation of Competitive Research Groups

Federación Española de Enfermedades Raras

Publisher

Association for Computing Machinery (ACM)

Subject

Hardware and Architecture,Information Systems,Software

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Combining Static and Dynamic Analysis to Query Characteristics of HPC Applications;2021 IEEE International Parallel and Distributed Processing Symposium Workshops (IPDPSW);2021-06

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3