PHANTOM

Author:

Zhai Jidong1,Chen Wenguang1,Zheng Weimin1

Affiliation:

1. Tsinghua University, Beijing, China

Abstract

For designers of large-scale parallel computers, it is greatly desired that performance of parallel applications can be predicted at the design phase. However, this is difficult because the execution time of parallel applications is determined by several factors, including sequential computation time in each process, communication time and their convolution. Despite previous efforts, it remains an open problem to estimate sequential computation time in each process accurately and efficiently for large-scale parallel applications on non-existing target machines. This paper proposes a novel approach to predict the sequential computation time accurately and efficiently. We assume that there is at least one node of the target platform but the whole target system need not be available. We make two main technical contributions. First, we employ deterministic replay techniques to execute any process of a parallel application on a single node at real speed. As a result, we can simply measure the real sequential computation time on a target node for each process one by one. Second, we observe that computation behavior of processes in parallel applications can be clustered into a few groups while processes in each group have similar computation behavior. This observation helps us reduce measurement time significantly because we only need to execute representative parallel processes instead of all of them. We have implemented a performance prediction framework, called PHANTOM, which integrates the above computation-time acquisition approach with a trace-driven network simulator. We validate our approach on several platforms. For ASCI Sweep3D, the error of our approach is less than 5% on 1024 processor cores. Compared to a recent regression-based prediction approach, PHANTOM presents better prediction accuracy across different platforms.

Publisher

Association for Computing Machinery (ACM)

Subject

Computer Graphics and Computer-Aided Design,Software

Cited by 62 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. SimMSG: Simulating Transportation of MPI Messages in High Performance Computing Systems;2023 IEEE International Conference on High Performance Computing & Communications, Data Science & Systems, Smart City & Dependability in Sensor, Cloud & Big Data Systems & Application (HPCC/DSS/SmartCity/DependSys);2023-12-17

2. Optimizing Logging and Monitoring in Heterogeneous Cloud Environments for IoT and Edge Applications;IEEE Internet of Things Journal;2023-12-15

3. Leveraging simulation of high performance computing systems with node simulation using architecture simulator;CCF Transactions on High Performance Computing;2023-11-13

4. Dependency-Driven Interconnection Network Simulation Using MPI Traces;2023 International Conference on Ubiquitous Communication (Ucom);2023-07-07

5. A particle-based parallel scheme for material point method (MPM) using message passing interface (MPI);Computational Particle Mechanics;2022-05-17

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3