STIFT: A Spatio-Temporal Integrated Folding Tree for Efficient Reductions in Flexible DNN Accelerators

Author:

Muñoz-Martínez Francisco1,Abellán José L.2,Acacio Manuel E.1,Krishna Tushar3

Affiliation:

1. Universidad de Murcia, (Spain)

2. Universidad Católica de Murcia, (Spain)

3. Georgia Institute of Technology, (USA)

Abstract

Increasing deployment of Deep Neural Networks (DNNs) recently fueled interest in the development of specific accelerator architectures capable of meeting their stringent performance and energy consumption requirements. DNN accelerators can be organized around three separate NoCs, namely distribution, multiplier and reduction networks (or DN, MN and RN, respectively) between the global buffer(s) and the compute units (multipliers/adders). Among them, the RN, used to generate and reduce the partial sums produced during DNN processing, is a first-order driver of the area and energy efficiency of the accelerator. RNs can be orchestrated to exploit a Temporal, Spatial or Spatio-Temporal reduction dataflow. Among these, Spatio-Temporal reduction is the one that has shown superior performance. However, as we demonstrate in this work, a state-of-the-art implementation of the Spatio-Temporal reduction dataflow, based on the addition of Accumulators (Ac) to the RN (i.e. RN+Ac strategy), can result into significant area and energy expenses. To cope with this important issue, we propose STIFT (that stands for Spatio-Temporal Integrated Folding Tree ) that implements the Spatio-Temporal reduction dataflow entirely on the RN hardware substrate (i.e. without the need of the extra accumulators). STIFT results into significant area and power savings regarding the more complex RN+Ac strategy, at the same time its performance advantage is preserved.

Publisher

Association for Computing Machinery (ACM)

Subject

Electrical and Electronic Engineering,Hardware and Architecture,Software

Reference32 articles.

1. [n. d.]. Bluespec System Verilog (BSV). http://wiki.bluespec.com/. [n. d.]. Bluespec System Verilog (BSV). http://wiki.bluespec.com/.

2. [n. d.]. MAERI code v1. https://github.com/hyoukjun/MAERI. [n. d.]. MAERI code v1. https://github.com/hyoukjun/MAERI.

3. [n. d.]. PyTorch. https://pytorch.org/. [n. d.]. PyTorch. https://pytorch.org/.

4. [n. d.]. SIGMA code v1. https://github.com/georgia-tech-synergy-lab/SIGMA. [n. d.]. SIGMA code v1. https://github.com/georgia-tech-synergy-lab/SIGMA.

5. S. Arora , T. Leighton , and B. Maggs . 1990. On-line algorithms for path selection in a nonblocking network . In Proc. of the 22nd annual ACM symposium on Theory of Computing (April 1990 ), 149–158. S. Arora, T. Leighton, and B. Maggs. 1990. On-line algorithms for path selection in a nonblocking network. In Proc. of the 22nd annual ACM symposium on Theory of Computing (April 1990), 149–158.

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. NeuraChip: Accelerating GNN Computations with a Hash-based Decoupled Spatial Accelerator;2024 ACM/IEEE 51st Annual International Symposium on Computer Architecture (ISCA);2024-06-29

2. A Comparative Analysis of Microrings Based Incoherent Photonic GEMM Accelerators;2024 25th International Symposium on Quality Electronic Design (ISQED);2024-04-03

3. SAVector: Vectored Systolic Arrays;IEEE Access;2024

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3