Adopting Third-party Bots for Managing Online Communities

Author:

Hwang Sohyeon1ORCID,Kiene Charles2ORCID,Ong Serene1ORCID,Shaw Aaron1ORCID

Affiliation:

1. Northwestern University, Evanston, IL, USA

2. University of Washington, Seattle, WA, USA

Abstract

Bots have become critical for managing online communities on platforms, especially to match the increasing technical sophistication of online harms. However, community leaders often adoptthird-party bots, creating room for misalignment in their assumptions, expectations, and understandings (i.e., their technological frames) about them. On platforms where sharing bots can be extremely valuable, how community leaders can revise their frames about bots to more effectively adopt them is unclear. In this work, we conducted a qualitative interview study with 16 community leaders on Discord examining how they adopt third-party bots. We found that participants addressed challenges stemming from uncertainties about a bot's security, reliability, and fit through emergent social ecosystems. Formal and informal opportunities to discuss bots with others across communities enabled participants to revise their technological frames over time, closing gaps in bot-specific skills and knowledge. This social process of learning shifted participants' perspectives of the labor of bot adoption into something that was satisfying and fun, underscoring the value of collaborative and communal approaches to adopting bots. Finally, by shaping participants' mental models of the nature, value, and use of bots, social ecosystems also raise some practical tensions in how they support user creativity and customization in third-party bot use. Together, the social nature of adopting third-party bots in our interviews offers insight into how we can better support the sharing of valuable user-facing tools across online communities.

Funder

National Science Foundation

Publisher

Association for Computing Machinery (ACM)

Reference74 articles.

1. Medium versus mechanism: Supporting collaboration through customisation

2. Wiebe E Bijker, Thomas Parke Hughes, and T. J Pinch (Eds.). 1987. The Social Construction of Technological Systems: New Directions in the Sociology and History of Technology. MIT Press, Cambridge, MA.

3. To saturate or not to saturate? Questioning data saturation as a useful concept for thematic analysis and sample-size rationales

4. Who is the "Human" in Human-Centered Machine Learning

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3