ReVive

Author:

Prvulovic Milos1,Zhang Zheng2,Torrellas Josep1

Affiliation:

1. University of Illinois, Urbana-Champaign

2. University of Illinois, Urbana-Champaign and Microsoft Research Asia

Abstract

This paper presents ReVive, a novel general-purpose rollback recovery mechanism for shared-memory multiprocessors. ReVive carefully balances the conflicting requirements of availability, performance, and hardware cost. ReVive performs checkpointing, logging, and distributed parity protection, all memory-based. It enables recovery from a wide class of errors, including the permanent loss of an entire node. To maintain high performance, ReVive includes specialized hardware that performs frequent operations in the background, such as log and parity updates. To keep the cost low, more complex checkpointing and recovery functions are performed in software, while the hardware modifications are limited to the directory controllers of the machine. Our simulation results on a 16-processor system indicate that the average error-free execution time overhead of using ReVive is only 6.3%, while the achieved availability is better than 99.999% even when the errors occur as often as once per day.

Publisher

Association for Computing Machinery (ACM)

Cited by 21 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Survey on Redundancy Based-Fault tolerance methods for Processors and Hardware accelerators - Trends in Quantum Computing, Heterogeneous Systems and Reliability;ACM Computing Surveys;2024-06-28

2. A Novel Cache and Consistency Mechanism for IoT Time Series Data;2023 IEEE International Conference on High Performance Computing & Communications, Data Science & Systems, Smart City & Dependability in Sensor, Cloud & Big Data Systems & Application (HPCC/DSS/SmartCity/DependSys);2023-12-17

3. Efficient selective replication of critical code regions for SDC mitigation leveraging redundant multithreading;The Journal of Supercomputing;2021-05-10

4. On Providing OS Support to Allow Transparent Use of Traditional Programming Models for Persistent Memory;ACM Journal on Emerging Technologies in Computing Systems;2020-07-14

5. Introduction;Reliable and Energy Efficient Streaming Multiprocessor Systems;2017-11-04

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3