Timekeeping in the memory system

Author:

Hu Zhigang1,Kaxiras Stefanos2,Martonosi Margaret1

Affiliation:

1. Princeton University

2. Communication Systems and Software Agere Systems

Abstract

Techniques for analyzing and improving memory referencing behavior continue to be important for achieving good overall program performance due to the ever-increasing performance gap between processors and main memory. This paper offers a fresh perspective on the problem of predicting and optimizing memory behavior. Namely, we show quantitatively the extent to which detailed timing characteristics of past memory reference events are strongly predictive of future program reference behavior. We propose a family of time-keeping techniques that optimize behavior based on observations about particular cache time durations, such as the cache access interval or the cache dead time. Timekeeping techniques can be used to build small simple, and high-accuracy (often 90% or more) predictors for identifying conflict misses, for predicting dead blocks, and even for estimating the time at which the next reference to a cache frame will occur and the address that will be accessed. Based on these predictors, we demonstrate two new and complementary time-based hardware structures: (1) a time-based victim cache that improves performance by only storing conflict miss lines with likely reuse, and (2) a time-based prefetching technique that hones in on the right address to prefetch, and the right time to schedule the prefetch. Our victim cache technique improves performance over previous proposals by better selections of what to place in the victim cache. Our prefetching technique outperforms similar prior hardware prefetching proposals, despite being orders of magnitude smaller. Overall, these techniques improve performance by more than 11% across the SPEC2000 benchmark suite.

Publisher

Association for Computing Machinery (ACM)

Cited by 27 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. ACIC: Admission-Controlled Instruction Cache;2023 IEEE International Symposium on High-Performance Computer Architecture (HPCA);2023-02

2. Graphfire: Synergizing Fetch, Insertion, and Replacement Policies for Graph Analytics;IEEE Transactions on Computers;2023-01-01

3. Towards Access Pattern Prediction for Big Data Applications;2022 13th International Conference on Information and Communication Technology Convergence (ICTC);2022-10-19

4. Applying machine learning to enhance the cache performance using reuse distance;Evolutionary Intelligence;2022-05-27

5. Effective Mimicry of Belady’s MIN Policy;2022 IEEE International Symposium on High-Performance Computer Architecture (HPCA);2022-04

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3