The Price of Bounded Preemption

Author:

Alon Noga1,Azar Yossi2,Berlin Mark2

Affiliation:

1. Princeton University, USA and Tel-Aviv University, Tel-Aviv, Israel

2. Tel-Aviv University, Tel-Aviv, Israel

Abstract

In this article we provide a tight bound for the price of preemption for scheduling jobs on a single machine (or multiple machines). The input consists of a set of jobs to be scheduled and of an integer parameter k ≥ 1. Each job has a release time, deadline, length (also called processing time), and value associated with it. The goal is to feasibly schedule a subset of the jobs so that their total value is maximal; while preemption of a job is permitted, a job may be preempted no more than k times. The price of preemption is the worst possible (i.e., largest) ratio of the optimal non-bounded-preemptive scheduling to the optimal k -bounded-preemptive scheduling. Our results show that allowing at most k preemptions suffices to guarantee a Θ(min {log k +1 n , log k +1 P }) fraction of the total value achieved when the number of preemptions is unrestricted (where n is the number of the jobs and P the ratio of the maximal length to the minimal length), giving us an upper bound for the price; a specific scenario serves to prove the tightness of this bound. We further show that when no preemptions are permitted at all (i.e., k =0), the price is Θ (min { n , log P }). As part of the proof, we introduce the notion of the Bounded-Degree Ancestor-Free Sub-Forest (BAS) . We investigate the problem of computing the maximal-value BAS of a given forest and give a tight bound for the loss factor, which is Θ(log k +1 n ) as well, where n is the size of the original forest and k is the bound on the degree of the sub-forest.

Funder

NSF

BSF

Israel Science Foundation

Publisher

Association for Computing Machinery (ACM)

Subject

Computational Theory and Mathematics,Computer Science Applications,Hardware and Architecture,Modeling and Simulation,Software

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3