An impact analysis method for safety-critical user interface design

Author:

Galliers Julia1,Sutcliffe Alistair2,Minocha Shailey3

Affiliation:

1. City Univ. London, London, UK

2. UMIST, Manchester, UK

3. Open Univ., Milton Keynes, UK

Abstract

We describe a method of assessing the implications for human error on user interface design of safety-critical systems. In previous work we have proposed a taxonomy of influencing factors that contribute to error. In this article, components of the taxonomy are combined into a mathematical and causal model for error, represented as a Bayesian Belief Net (BBN). The BBN quantifies error influences arising from user knowledge, ability, and the task environ-ment, combined with factors describing the complexity of user action and user interface quality. The BBN model predicts probabilities of different types of errorslips and mistakes for each component action of a task involving user-system interaction. We propose an Impact Analysis Method that involves running test scenarios against this causal model of error in order to determine user interactions that are prone to different types of error. Applying the proposed method will enable the designer to determine the combinations of influencing factors and their interactions that are most likely to influence human error. Finally we show how such scenario-based causal analysis can be useful as a means of focusing on relevant guidelines for safe user interface design. The proposed method is demonstrated through a case study of an operator performing a task using the control system for a laser spectrophotometer.We describe a method of assessing the implications for human error on user interface design of safety-critical systems. In previous work we have proposed a taxonomy of influencing factors that contribute to error. In this article, components of the taxonomy are combined into a mathematical and causal model for error, represented as a Bayesian Belief Net (BBN). The BBN quantifies error influences arising from user knowledge, ability, and the task environ-ment, combined with factors describing the complexity of user action and user interface quality. The BBN model predicts probabilities of different types of errorslip for each component action of a task involving user-system interaction. We propose an Impact Analysis Method that involves running test scenarios against this causal model of error in order to determine user interactions that are prone to different types of error. Applying the proposed method will enable the designer to determine the combinations of influencing factors and their interactions that are most likely to influence human error. Finally we show how such scenario-based causal analysis can be useful as a means of focusing on relevant guidelines for safe user interface design. The proposed method is demonstrated through a case study of an operator performing a task using the control system for a laser spectrophotometer.

Publisher

Association for Computing Machinery (ACM)

Subject

Human-Computer Interaction

Reference39 articles.

1. BELL B. J. AND SWAIN A. D. 1985. Overview of a procedure for human reliability analsis. Hazard Prev. (Jan. -Feb. ) 22-25. BELL B. J. AND SWAIN A. D. 1985. Overview of a procedure for human reliability analsis. Hazard Prev. (Jan. -Feb. ) 22-25.

2. The need for recognition;CACIOPPO J. T.;J. Person. Soc. Psychol.,1982

Cited by 21 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3