Comparing Decentralized Algorithms for Dynamic Task Sharing among Agents with Limited Resources

Author:

Hayashi Hisashi1

Affiliation:

1. School of Industrial Technology, Advanced Institute of Industrial Technology, Japan

Funder

JSPS KAKENHI Grant

JST, AIP Trilateral AI Research

Publisher

ACM

Reference36 articles.

1. A. Ahmed , A. Patel , T. Brown , M. Ham , M.-W. Jang , and G. Agha . 2005. Task Assignment for a Physical Agent Team via a Dynamic Forward/Reverse Auction Mechanism . In Proc. of Int. Conf. on Integration of Knowledge Intensive Multi-Agent Systems. 311–317 . A. Ahmed, A. Patel, T. Brown, M. Ham, M.-W. Jang, and G. Agha. 2005. Task Assignment for a Physical Agent Team via a Dynamic Forward/Reverse Auction Mechanism. In Proc. of Int. Conf. on Integration of Knowledge Intensive Multi-Agent Systems. 311–317.

2. P. Beaumont and B. Chaib-draa . 2004. Multiagent Coordination Techniques for Complex Environments: the Case of a Fleet of Combat Ships . In Proc. of the Int. Command and Control Research and Technology Symposium. P. Beaumont and B. Chaib-draa. 2004. Multiagent Coordination Techniques for Complex Environments: the Case of a Fleet of Combat Ships. In Proc. of the Int. Command and Control Research and Technology Symposium.

3. Multiagent Coordination Techniques for Complex Environments: The Case of a Fleet of Combat Ships

4. C. Berner G. Brockman B. Chan V. Cheung P. Debiak C. Dennison D. Farhi Q. Fischer S. Hashme C. Hesse R. Józefowicz S. Gray C. Olsson J. W. Pachocki M. Petrov H. Pondé de Oliveira Pinto J. Raiman T. Salimans J. Schlatter J. Schneider S. Sidor I. Sutskever J. Tang F. Wolski and S. Zhang. 2019. Dota 2 with Large Scale Deep Reinforcement Learning. ArXiv abs/1912.06680(2019). C. Berner G. Brockman B. Chan V. Cheung P. Debiak C. Dennison D. Farhi Q. Fischer S. Hashme C. Hesse R. Józefowicz S. Gray C. Olsson J. W. Pachocki M. Petrov H. Pondé de Oliveira Pinto J. Raiman T. Salimans J. Schlatter J. Schneider S. Sidor I. Sutskever J. Tang F. Wolski and S. Zhang. 2019. Dota 2 with Large Scale Deep Reinforcement Learning. ArXiv abs/1912.06680(2019).

5. C. Brown , P. Fagan , A. Hepplewhite , B. Irving , D. Lane , and E. Squire . 2001. Real-time Decision Support for the Anti-air Warfare Commander . In Proc. of Int. Command and Control Research and Technology Symposium. C. Brown, P. Fagan, A. Hepplewhite, B. Irving, D. Lane, and E. Squire. 2001. Real-time Decision Support for the Anti-air Warfare Commander. In Proc. of Int. Command and Control Research and Technology Symposium.

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Banking Method: Addressing Resource Token Bias in P2P Human Resource Sharing Platform;2023 15th International Congress on Advanced Applied Informatics Winter (IIAI-AAI-Winter);2023-12-11

2. Assessing the Possibility of Making Employees Multiskilled in Interdepartmental Human Resources Sharing through Multi-agent Simulation;2023 14th IIAI International Congress on Advanced Applied Informatics (IIAI-AAI);2023-07-08

3. How Can Adults Make Time to Study: A System for Employee Sharing and Reskilling Education;Agents and Multi-agent Systems: Technologies and Applications 2023;2023

4. Cost-Aware Dynamic Task Sharing Among Decentralized Autonomous Agents: Towards Dynamic Patient Sharing Among Hospitals;Agents and Multi-Agent Systems: Technologies and Applications 2022;2022

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3