Abstract versus concrete computation on metric partial algebras

Author:

Tucker J. V.1,Zucker J. I.2

Affiliation:

1. University of Wales, Swansea, Wales

2. McMaster University, Hamilton, Ontario, Canada

Abstract

In the theory of computation on topological algebras there is a considerable gap between so-called abstract and concrete models of computation. In concrete models, unlike abstract models, the computations depend on the representation of the algebra. First, we show that with abstract models, one needs algebras with <i>partial operations</i>, and computable functions that are both <i>continuous</i> and <i>many-valued</i>. This many-valuedness is needed even to compute single-valued functions, and so <i>abstract models must be nondeterministic even to compute deterministic problems</i>. As an abstract model, we choose the "while"-array programming language, extended with a nondeterministic "countable choice" assignment, called the <i><b>WhileCC*</b></i> model. Using this, we introduce the concept of <i>approximable many-valued computation</i> on metric algebras. For our concrete model, we choose metric algebras with <i>effective representations</i>. We prove:(1) for any metric algebra <i>A</i> with an effective representation α, <i><b>WhileCC*</b></i> approximability implies computability in α, and (2) also the converse, under certain reasonable conditions on <i>A</i>. From (1) and (2) we derive an equivalence theorem between abstract and concrete computation on metric partial algebras. We give examples of algebras where this equivalence holds.

Publisher

Association for Computing Machinery (ACM)

Subject

Computational Mathematics,Logic,General Computer Science,Theoretical Computer Science

Cited by 43 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Semantics, Specification Logic, and Hoare Logic of Exact Real Computation;Logical Methods in Computer Science;2024-06-24

2. Verified Exact Real Computation with Nondeterministic Functions and Limits;Fundamentals of Computation Theory;2023

3. Tracking computability of GPAC-generable functions;Journal of Logic and Computation;2020-12-16

4. Tracking Computability of GPAC-Generable Functions;Logical Foundations of Computer Science;2019-12-20

5. APPROXIMABILITY IN THE GPAC;LOG METH COMPUT SCI;2019

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3