Affiliation:
1. University of Southampton
2. Newcastle University
3. The Chinese University of Hong Kong
Abstract
Complex thermal behavior inhibits the advancement of three-dimensional (3D) very-large-scale-integration (VLSI) system designs, as it could lead to ultra-high temperature hotspots and permanent silicon device damage. This article introduces a new runtime thermal management strategy to effectively diffuse and manage heat throughout 3D chip geometry for a better throughput performance in networks on chip (NoC). This strategy employs a dynamic programming-based runtime thermal management (DPRTM) policy to provide online thermal regulation. Reactive and proactive adaptive schemes are integrated to optimize the routing pathways depending on the critical temperature thresholds and traffic developments. Also, when the critical system thermal limit is violated, an urgent throttling will take place. The proposed DPRTM is rigorously evaluated through cycle-accurate simulations, and results show that the proposed approach outperforms conventional approaches in terms of computational efficiency and thermal stability. For example, the system throughput using the DPRTM approach can be improved by 33% when compared to other adaptive routing strategies for a given thermal constraint. Moreover, the DPRTM implementation presented in this article demonstrates that the hardware overhead is insignificant. This work opens a new avenue for exploring the on-chip adaptability and thermal regulation for future large-scale and 3D many-core integrations.
Funder
Engineering and Physical Sciences Research Council
Chinese University of Hong Kong
Croucher Foundation
Scholarship Grants from the Iraqi Ministry of Higher Education and Scientific Research
Publisher
Association for Computing Machinery (ACM)
Subject
Electrical and Electronic Engineering,Computer Graphics and Computer-Aided Design,Computer Science Applications
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献