Application-Focused Energy-Fidelity Scalability for Wireless Motion-Based Health Assessment

Author:

Hanson Mark A.1,Powell Harry C.1,Barth Adam T.1,Lach John1

Affiliation:

1. University of Virginia

Abstract

Energy-fidelity trade-offs are central to the performance of many technologies, but they are essential in wireless body area sensor networks (BASNs) due to severe energy and processing constraints and the critical nature of certain healthcare applications. On-node signal processing and compression techniques can save energy by greatly reducing the amount of data transmitted over the wireless channel, but lossy techniques, capable of high compression ratios, can incur a reduction in application fidelity. In order to maximize system performance, these trade-offs must be considered at runtime due to the dynamic nature of BASN applications, including sensed data, operating environments, user actuation, etc. BASNs therefore require energy-fidelity scalability, so automated and user-initiated trade-offs can be made dynamically. This article presents a data rate scalability framework within a motion-based health application context which demonstrates the design of efficient and efficacious wireless health systems.

Publisher

Association for Computing Machinery (ACM)

Subject

Hardware and Architecture,Software

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A Review of Medication Adherence Monitoring Technologies;Applied System Innovation;2018-05-06

2. Constraint-Aware Data Analysis on Mobile Devices;Adaptive Mobile Computing;2017

3. Learning Hardware-Friendly Classifiers Through Algorithmic Stability;ACM Transactions on Embedded Computing Systems;2016-06-07

4. Unobtrusive and Energy-Efficient Swimming Exercise Tracking Using On-Node Processing;IEEE Sensors Journal;2016-05

5. A wearable real-time activity tracker;Biomedical Engineering Letters;2015-06

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3