LAVA: Log Authentication and Verification Algorithm

Author:

Bajramovic Edita1ORCID,Fein Christofer2ORCID,Frinken Marius1ORCID,Rösler Paul1ORCID,Freiling Felix1ORCID

Affiliation:

1. Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Germany

2. Albstadt-Sigmaringen University, Germany

Abstract

Log files provide essential information regarding the actions of processes in critical computer systems. If an attacker modifies log entries, then critical digital evidence is lost. Therefore, many algorithms for secure logging have been devised, each achieving different security goals under different assumptions. We analyze these algorithms and identify their essential security features. Within a common system and attacker model, we integrate these algorithms into a single (parameterizable) “meta” algorithm called LAVA that possesses the union of the security features and can be parameterized to yield the security features of former algorithms. We present a security and efficiency analysis and provide a Python module that can be used to provide secure logging for forensics and incident response.

Publisher

Association for Computing Machinery (ACM)

Subject

Computer Networks and Communications,Computer Science Applications,Hardware and Architecture,Safety Research,Information Systems,Software

Reference26 articles.

1. Rafael Accorsi. 2008. Automated Counterexample-driven Audits of Authentic System Records. Ph.D. Dissertation. Universität Freiburg.

2. Rafael Accorsi. 2009. Safe-keeping digital evidence with secure logging protocols: State of the art and challenges. In Proceedings of the 5th International Conference on IT Security Incident Management and IT Forensics (IMF’09). IEEE, 94–110.

3. BBox: A Distributed Secure Log Architecture

4. Edita Bajramovic. 2019. Secure Logging in Operational Instrumentation and Control Systems. Ph.D. Dissertation. Friedrich-Alexander-Universität Erlangen-Nürnberg.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3