Affiliation:
1. Duke University, Durham NC
2. Carnegie Mellon University, Pittsburgh, PA
3. SCALGO USA, Aarhus N, Denmark
Abstract
With modern focus on remote sensing technology, such as LiDAR, the amount of spatial data, in the form of massive point clouds, has increased dramatically. Furthermore, repeated surveys of the same areas are becoming more common. This trend will only increase as topographic changes prompt surveys over already scanned areas, in which case we obtain large spatiotemporal datasets.
An initial step in the analysis of such spatial data is to create a digital elevation model representing the terrain, possibly over time. In the case of spatial (spatiotemporal, respectively) datasets, these models often represent elevation on a 2D (3D, respectively) grid. This involves interpolating the elevation of LiDAR points on these grid points.
In this article, we show how to efficiently perform natural neighbor interpolation over a 2D and 3D grid. Using a graphics processing unit (GPU), we describe different algorithms to attain speed and GPU-memory tradeoffs. Our experimental results demonstrate that our algorithms not only are significantly faster than earlier ones but also scale to much bigger datasets that previous algorithms were unable to handle.
Funder
United States - Israel Binational Science Foundation
Army Research Office
National Institutes of Health
Directorate for Biological Sciences
U.S. Army Corps of Engineers
Publisher
Association for Computing Machinery (ACM)
Subject
Discrete Mathematics and Combinatorics,Geometry and Topology,Computer Science Applications,Modeling and Simulation,Information Systems,Signal Processing
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献