Statistical Abstraction for Multi-scale Spatio-temporal Systems

Author:

Michaelides Michalis1ORCID,Hillston Jane1ORCID,Sanguinetti Guido1

Affiliation:

1. School of Informatics, University of Edinburgh, Edinburgh, United Kingdom

Abstract

Modelling spatio-temporal systems exhibiting multi-scale behaviour is a powerful tool in many branches of science, yet it still presents significant challenges. Here, we consider a general two-layer (agent-environment) modelling framework, where spatially distributed agents behave according to external inputs and internal computation; this behaviour may include influencing their immediate environment, creating a medium over which agent-agent interaction signals can be transmitted. We propose a novel simulation strategy based on a statistical abstraction of the agent layer, which is typically the most detailed component of the model and can incur significant computational cost in simulation. The abstraction makes use of Gaussian Processes, a powerful class of non-parametric regression techniques from Bayesian Machine Learning, to estimate the agent’s behaviour given the environmental input. We show on two biological case studies how this technique can be used to speed up simulations and provide further insights into model behaviour.

Publisher

Association for Computing Machinery (ACM)

Subject

Computer Science Applications,Modeling and Simulation

Reference39 articles.

1. Computational Methods in Systems Biology

2. Smoothed model checking for uncertain continuous-time Markov chains. Info;Bortolussi Luca;Comput.,2016

3. The Ordered Extension of Pseudopodia by Amoeboid Cells in the Absence of External Cues

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Stationary Distributions and Metastable Behaviour for Self-regulating Proteins with General Lifetime Distributions;Computational Methods in Systems Biology;2020

2. Introduction to the Special Issue on Qest 2017;ACM Transactions on Modeling and Computer Simulation;2019-12-17

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3