Benefits of Using Activity Recommender Technology for Self-management of Depressive Symptoms

Author:

Rohani Darius A.1,Faurholt-Jepsen Maria2,Kessing Lars V.2,Bardram Jakob E.3

Affiliation:

1. Department of Health Technology, Technical University of Denmark, Dennmark

2. Psychiatric Centre Copenhagen, Denmark

3. Department of Health Technology, Technical University of Denmark, Denmark

Abstract

Behavioral Activation (BA)therapy has shown to be effective in treating depression. Recommending healthy activities is a core principle in Behavioral Activation (BA), which is typically done by the therapist. However, most BA smartphone applications do not recommend specific activities. This article reports quantitative results from an 8-week feasibility study of a previously presented smartphone-based BA recommender system. The system supports the planning and enacting of pleasurable activities and promotes activation of diverse activity types. Enrollment included 43 clinically depressed patients who installed the system on their phone and initiated activity scheduling. Twenty-nine patients used the system daily for more than a week.These patients presented a significant reduction in depressive symptoms during the study period. They displayed a more personalized usage approach and created recurring health goals comprising of their own customized activities. Furthermore, they took inspiration within various types of activities, thereby displaying more activity diversity. This study suggests that enacting a diverse mixture of activities that promote good sleep, personal hygiene, exercise, social contact, and leisure time can be essential in managing depressive symptoms. A smartphone-based activity recommender system can help patients achieve this.

Funder

Innovationsfonden

Publisher

Association for Computing Machinery (ACM)

Reference70 articles.

1. The persian checklist of pleasant events (PCPE): Development, validity and reliability;Bakht Sepideh;Iran. J. Psychiatr.,2015

2. Designing mobile health technology for bipolar disorder

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3