The Complexity of Approximately Counting Retractions

Author:

Focke Jacob1,Goldberg Leslie Ann1,Živný Stanislav1

Affiliation:

1. University of Oxford, Wolfson Building, Parks Road, Oxford, United Kingdom

Abstract

Let G be a graph that contains an induced subgraph H . A retraction from G to H is a homomorphism from G to H that is the identity function on H . Retractions are very well studied: Given H , the complexity of deciding whether there is a retraction from an input graph G to H is completely classified, in the sense that it is known for which H this problem is tractable (assuming P ≠ NP). Similarly, the complexity of (exactly) counting retractions from G to H is classified (assuming FP ≠ #P). However, almost nothing is known about approximately counting retractions. Our first contribution is to give a complete trichotomy for approximately counting retractions to graphs without short cycles. The result is as follows: (1) Approximately counting retractions to a graph H of girth at least 5 is in FP if every connected component of H is a star, a single looped vertex, or an edge with two loops. (2) Otherwise, if every component is an irreflexive caterpillar or a partially bristled reflexive path, then approximately counting retractions to H is equivalent to approximately counting the independent sets of a bipartite graph—a problem that is complete in the approximate counting complexity class RH Π 1 . (3) Finally, if none of these hold, then approximately counting retractions to H is equivalent to approximately counting the satisfying assignments of a Boolean formula. Our second contribution is to locate the retraction counting problem for each H in the complexity landscape of related approximate counting problems. Interestingly, our results are in contrast to the situation in the exact counting context. We show that the problem of approximately counting retractions is separated both from the problem of approximately counting homomorphisms and from the problem of approximately counting list homomorphisms—whereas for exact counting all three of these problems are interreducible. We also show that the number of retractions is at least as hard to approximate as both the number of surjective homomorphisms and the number of compactions. In contrast, exactly counting compactions is the hardest of all of these exact counting problems.

Funder

H2020 European Research Council

FP7 Ideas: European Research Council

Engineering and Physical Sciences Research Council

Publisher

Association for Computing Machinery (ACM)

Subject

Computational Theory and Mathematics,Theoretical Computer Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3