DAS: Efficient Street View Image Sampling for Urban Prediction

Author:

Zhang Guozhen1,Yi Jinhui1ORCID,Yuan Jian1ORCID,Li Yong1ORCID,Jin Depeng1ORCID

Affiliation:

1. Beijing National Research Center for Information Science and Technology (BNRist), Department of Electronic Engineering, Tsinghua University, Beijing Shi, China

Abstract

Street view data is one of the most common data sources for urban prediction tasks, such as estimating socioeconomic status, sensing physical urban changes, and identifying urban villages. Typical research in this field consists of two steps: acquiring a dataset with a street view image sampling algorithm and designing a prediction algorithm for urban prediction tasks. However, most of the previous research focuses on the prediction algorithms, leaving the sampling algorithms underexplored. To fill this gap, we set out to investigate how different street view image sampling algorithms affect the performance of the follow-up tasks and develop an effective street view image sampling algorithm for urban prediction. Through a comprehensive analysis of the performance of different sampling algorithms in three of the most common urban prediction tasks, including commercial activeness prediction, urban liveliness prediction, and urban population prediction, we provide solid empirical evidence that the sampling algorithm significantly affects the performance of the prediction model. Specifically, the performance differences of different sampling algorithms can reach over 25%. Further, we revealed that the sampling step size and the sampling quality are two important factors that affect the performance of a sampling algorithm, while the sampling angle has little influence. Inspired by our analysis results, we propose an effective street view image sampling algorithm, DAS, which contains a denoising module and an adaptive sampling module. It can dynamically adjust the sampling step size to adapt to the optimal size for each region and get rid of the impact of noise images in the meantime. Experiments on three large-scale datasets demonstrate its superior performance over multiple state-of-the-art baselines, and further ablation study shows the effectiveness of each module. Finally, through a thorough discussion of our findings and experimental results, we provide insights into the street view image sampling algorithm design, and we call for more researches in this blank area.

Funder

National Key Research and Development Program of China

National Natural Science Foundation of China

Publisher

Association for Computing Machinery (ACM)

Subject

Artificial Intelligence,Theoretical Computer Science

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Pano2Geo: An efficient and robust building height estimation model using street-view panoramas;ISPRS Journal of Photogrammetry and Remote Sensing;2024-09

2. RCCNet: A Spatial-Temporal Neural Network Model for Logistics Delivery Timely Rate Prediction;ACM Transactions on Intelligent Systems and Technology;2024-08-29

3. STONE: A Spatio-temporal OOD Learning Framework Kills Both Spatial and Temporal Shifts;Proceedings of the 30th ACM SIGKDD Conference on Knowledge Discovery and Data Mining;2024-08-24

4. An Urban Built Environment Analysis Approach for Street View Images Based on Graph Convolutional Neural Networks;Applied Sciences;2024-03-03

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3