Two-Stage Hypotheses Generation for Spoken Language Translation

Author:

Chen Boxing1,Zhang Min1,Aw Ai Ti1

Affiliation:

1. Institute for Infocomm Research, Singapore

Abstract

Spoken Language Translation (SLT) is the research area that focuses on the translation of speech or text between two spoken languages. Phrase-based and syntax-based methods represent the state-of-the-art for statistical machine translation (SMT). The phrase-based method specializes in modeling local reorderings and translations of multiword expressions. The syntax-based method is enhanced by using syntactic knowledge, which can better model long word reorderings, discontinuous phrases, and syntactic structure. In this article, we leverage on the strength of these two methods and propose a strategy based on multiple hypotheses generation in a two-stage framework for spoken language translation. The hypotheses are generated in two stages, namely, decoding and regeneration. In the decoding stage, we apply state-of-the-art, phrase-based, and syntax-based methods to generate basic translation hypotheses. Then in the regeneration stage, much more hypotheses that cannot be captured by the decoding algorithms are produced from the basic hypotheses. We study three regeneration methods: redecoding, n-gram expansion, and confusion network in the second stage. Finally, an additional reranking pass is introduced to select the translation outputs by a linear combination of rescoring models. Experimental results on the Chinese-to-English IWSLT-2006 challenge task of translating the transcription of spontaneous speech show that the proposed mechanism achieves significant improvements over the baseline of about 2.80 BLEU-score.

Publisher

Association for Computing Machinery (ACM)

Subject

General Computer Science

Reference68 articles.

1. Stochastic Finite-State Models for Spoken Language Machine Translation

2. Language translation apparatus and methods using context-based translation models;Berger A. L.;U.S. Patent,1996

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3