Multi-Label and Evolvable Dataset Preparation for Web-Based Object Detection

Author:

Li Shucheng1ORCID,Zhu Jingzhou1ORCID,Chang Boyu1ORCID,Wu Hao1ORCID,Xu Fengyuan1ORCID,Zhong Sheng1ORCID

Affiliation:

1. National Key Lab for Novel Software Technology, Nanjing University, China

Abstract

In this paper, we focus on the emerging field of web-based object detection, which has gained considerable attention due to its ability to utilize large amounts of web data for training, thus eliminating the need for labor-intensive manual annotations. However, the noisy and ever-evolving nature of web data poses challenges in preparing high-quality datasets for web-based object detection. To address these challenges, we propose a fully automatic dataset preparation method in this paper. Our proposed method incorporates a hierarchical clustering module that assigns multiple precise labels to each image. This module is based on our observation that web image data exhibits different distributions at varying granularities. Furthermore, an evolutionary relabeling module ensures the adaptability of both the prepared dataset and trained detection models to the ever-evolving web data. Extensive experiments demonstrate that our method outperforms other web-based methods, and achieves a comparable performance to those manually labeled benchmark datasets.

Publisher

Association for Computing Machinery (ACM)

Reference36 articles.

1. T/CESA 1307-2024. 2024. Information technology - Technical requirements of collaborative learning systems for heterogeneous computing.

2. T/CESA 1308-2024. 2024. Information technology - Data quality requirements for heterogeneous computing.

3. Hakan Bilen and Andrea Vedaldi. 2016. Weakly supervised deep detection networks. In Proceedings of the IEEE conference on computer vision and pattern recognition. 2846–2854.

4. End-to-End Object Detection with Transformers

5. Webly Supervised Learning of Convolutional Networks

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3