Algorithm 967

Author:

Malhotra Dhairya1,Biros George1

Affiliation:

1. The University of Texas at Austin, Austin, TX

Abstract

The solution of a constant-coefficient elliptic Partial Differential Equation (PDE) can be computed using an integral transform: A convolution with the fundamental solution of the PDE, also known as a volume potential. We present a Fast Multipole Method (FMM) for computing volume potentials and use them to construct spatially adaptive solvers for the Poisson, Stokes, and low-frequency Helmholtz problems. Conventional N-body methods apply to discrete particle interactions. With volume potentials, one replaces the sums with volume integrals. Particle N-body methods can be used to accelerate such integrals. but it is more efficient to develop a special FMM. In this article, we discuss the efficient implementation of such an FMM. We use high-order piecewise Chebyshev polynomials and an octree data structure to represent the input and output fields and enable spectrally accurate approximation of the near-field and the Kernel Independent FMM (KIFMM) for the far-field approximation. For distributed-memory parallelism, we use space-filling curves, locally essential trees, and a hypercube-like communication scheme developed previously in our group. We present new near and far interaction traversals that optimize cache usage. Also, unlike particle N-body codes, we need a 2:1 balanced tree to allow for precomputations. We present a fast scheme for 2:1 balancing. Finally, we use vectorization, including the AVX instruction set on the Intel Sandy Bridge architecture to get better than 50% of peak floating-point performance. We use task parallelism to employ the Xeon Phi on the Stampede platform at the Texas Advanced Computing Center (TACC). We achieve about 600 gflop /s of double-precision performance on a single node. Our largest run on Stampede took 3.5s on 16K cores for a problem with 18 e +9 unknowns for a highly nonuniform particle distribution (corresponding to an effective resolution exceeding 3 e +23 unknowns since we used 23 levels in our octree).

Publisher

Association for Computing Machinery (ACM)

Subject

Applied Mathematics,Software

Cited by 21 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Efficient convergent boundary integral methods for slender bodies;Journal of Computational Physics;2024-04

2. A Directional Equispaced Interpolation-Based Fast Multipole Method for Oscillatory Kernels;SIAM Journal on Scientific Computing;2023-02-23

3. Massively parallelized interpolated factored Green function method;Journal of Computational Physics;2023-02

4. CASPHAr: Cache-Managed Accelerator Staging and Pipelining in Heterogeneous System Architectures;IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems;2022-11

5. Scaling Poisson Solvers on Many Cores via MMEwald;IEEE Transactions on Parallel and Distributed Systems;2022-08-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3