1. C. Szegedy et al. 2014. Intriguing properties of neural networks. arXiv (2014). https://arxiv.org/abs/1312.6199 C. Szegedy et al. 2014. Intriguing properties of neural networks. arXiv (2014). https://arxiv.org/abs/1312.6199
2. D. Cohen-Steiner , H. Edelsbrunner , and J. Harer . 2007. Stability of persistence diagrams . Discrete And Computational Geometry , Vol. 37 , 1 ( 2007 ). D. Cohen-Steiner, H. Edelsbrunner, and J. Harer. 2007. Stability of persistence diagrams. Discrete And Computational Geometry , Vol. 37, 1 (2007).
3. A. Van den Oord , O. Vinyals , and K. Kavukcuoglu . 2017 . Neural Discrete Representation Learning. In 31st Intern. Conf. on Neural Information Processing Systems. A. Van den Oord, O. Vinyals, and K. Kavukcuoglu. 2017. Neural Discrete Representation Learning. In 31st Intern. Conf. on Neural Information Processing Systems.
4. H. Edelsbrunner and D. Morozov . 2014. Persistent homology: theory and practice . In European Congress of Mathematics. H. Edelsbrunner and D. Morozov. 2014. Persistent homology: theory and practice. In European Congress of Mathematics.
5. M. Ehrlich , L. Davis , S.N. Lim , and A. Shrivastava . 2021 . Analyzing and Mitigating JPEG Compression Defects in Deep Learning. In IEEE/CVF Intern. Conf. on Computer Vision. M. Ehrlich, L. Davis, S.N. Lim, and A. Shrivastava. 2021. Analyzing and Mitigating JPEG Compression Defects in Deep Learning. In IEEE/CVF Intern. Conf. on Computer Vision.