Affiliation:
1. Wayne State University, Detroit, Michigan
Abstract
Real-time multimedia subsystems often require support for switching between different resource and application execution modes. To ensure that timing constraints are not violated during or after a subsystem mode change, real-time schedulability analysis is required. However, existing time-efficient multimode schedulability analysis techniques for application-only mode changes are not appropriate for subsystems that require changes in the resource execution behavior (e.g., processors with dynamic power modes). Furthermore, all existing multimode schedulability analysis that handles both resource and application mode changes is highly exponential and not scalable for subsystems with a moderate or large number of modes. As a result, the notion of
resource optimality
is still unaddressed for real-time multimodal systems. In this report, we first address the lack of tractable schedulability analysis for such subsystems by proposing a model for characterizing multiple resource and application modes and by deriving a sufficient schedulability test that has pseudo-polynomial time complexity. Finally, we propose an algorithm which leverages this pseudo-polynomial schedulability analysis to optimize the resource usages (e.g., to minimize peak-power load) of a multimodal real-time system. Simulation results show that our proposed algorithms for schedulability analysis and resource allocation, when compared with previously-proposed approaches, require significantly less time and are just as precise.
Funder
Division of Computer and Network Systems
Wayne State University
Publisher
Association for Computing Machinery (ACM)
Subject
Hardware and Architecture,Software
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献