Affiliation:
1. Florida International University
2. San Jose State University
Abstract
In this article, we study the problem of how to maximize the throughput of a periodic real-time system under a given peak temperature constraint. We assume that different tasks in our system may have different power and thermal characteristics. Two scheduling approaches are presented. The first is built upon processors that can be in either
active
or
sleep
mode. By judiciously selecting tasks with different thermal characteristics as well as alternating the processor's
active
/
sleep
mode, the sleep period required to cool down the processor is kept at a minimum level, and, as the result, the throughput is maximized. We further extend this approach for processors with dynamic voltage/frequency scaling (DVFS) capability. Our experiments on a large number of synthetic test cases as well as real benchmark programs show that the proposed methods not only consistently outperform the existing approaches in terms of throughput maximization, but also significantly improve the feasibility of tasks when a more stringent temperature constraint is imposed.
Funder
Division of Computer and Network Systems
Publisher
Association for Computing Machinery (ACM)
Subject
Hardware and Architecture,Software
Cited by
117 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献