Distributed programming framework for fast iterative optimization in networked cyber-physical systems

Author:

Balani Rahul1,Wanner Lucas F.2,Srivastava Mani B.2

Affiliation:

1. IBM Research, New Delhi, India

2. University of California, Los Angeles

Abstract

Large-scale coordination and control problems in cyber-physical systems are often expressed within the networked optimization model. While significant advances have taken place in optimization techniques, their widespread adoption in practical implementations has been impeded by the complexity of internode coordination and lack of programming support for the same. Currently, application developers build their own elaborate coordination mechanisms for synchronized execution and coherent access to shared resources via distributed and concurrent controller processes. However, they typically tend to be error prone and inefficient due to tight constraints on application development time and cost. This is unacceptable in many CPS applications, as it can result in expensive and often irreversible side-effects in the environment due to inaccurate or delayed reaction of the control system. This article explores the design of a distributed shared memory (DSM) architecture that abstracts the details of internode coordination. It simplifies application design by transparently managing routing, messaging, and discovery of nodes for coherent access to shared resources. Our key contribution is the design of provably correct locality-sensitive synchronization mechanisms that exploit the spatial locality inherent in actuation to drive faster and scalable application execution through opportunistic data parallel operation. As a result, applications encoded in the proposed Hotline Application Programming Framework are error free, and in many scenarios, exhibit faster reactions to environmental events over conventional implementations. Relative to our prior work, this article extends Hotline with a new locality-sensitive coordination mechanism for improved reaction times and two tunable iteration control schemes for lower message costs. Our extensive evaluation demonstrates that realistic performance and cost of applications are highly sensitive to the prevalent deployment, network, and environmental characteristics. This highlights the importance of Hotline, which provides user-configurable options to trivially tune these metrics and thus affords time to the developers for implementing, evaluating, and comparing multiple algorithms.

Funder

Division of Computer and Network Systems

National Science Foundation

Publisher

Association for Computing Machinery (ACM)

Subject

Hardware and Architecture,Software

Reference29 articles.

1. R. Balani. 2009. Hotline App. Programming Framework. http://nesl.ee.ucla.edu/projects/hotline. R. Balani. 2009. Hotline App. Programming Framework. http://nesl.ee.ucla.edu/projects/hotline.

2. Programming Support for Distributed Optimization and Control in Cyber-Physical Systems

3. COUGAR

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Cyber Physical System (CPS)-Based Industry 4.0: A Survey;Journal of Industrial Integration and Management;2017-09

2. SA-EAST;ACM Transactions on Embedded Computing Systems;2017-04-14

3. A simple distributed garbage collector for distributed real-time Java;The Journal of Supercomputing;2014-07-12

4. Advanced Technologies in Life Cycle Engineering;Procedia CIRP;2014

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3