Printed Perforated Lampshades for Continuous Projective Images

Author:

Zhao Haisen1,Lu Lin1,Wei Yuan1ORCID,Lischinski Dani2,Sharf Andrei3,Cohen-Or Daniel4,Chen Baoquan1

Affiliation:

1. Shandong University, Shandong Province, P.R. China

2. The Hebrew University of Jerusalem, Jerusalem, Israel

3. Ben-Gurion University, Beer-Sheva, Israel

4. Tel Aviv University, Tel Aviv, Israel

Abstract

We present a technique for designing three-dimensional- (3D) printed perforated lampshades that project continuous grayscale images onto the surrounding walls. Given the geometry of the lampshade and a target grayscale image, our method computes a distribution of tiny holes over the shell, such that the combined footprints of the light emanating through the holes form the target image on a nearby diffuse surface. Our objective is to approximate the continuous tones and the spatial detail of the target image to the extent possible within the constraints of the fabrication process. To ensure structural integrity, there are lower bounds on the thickness of the shell, the radii of the holes, and the minimal distances between adjacent holes. Thus, the holes are realized as thin tubes distributed over the lampshade surface. The amount of light passing through a single tube may be controlled by the tube’s radius and by its orientation (tilt angle). The core of our technique thus consists of determining a suitable configuration of the tubes: their distribution across the relevant portion of the lampshade, as well as the parameters (radius, tilt angle) of each tube. This is achieved by computing a capacity-constrained Voronoi tessellation over a suitably defined density function and embedding a tube inside the maximal inscribed circle of each tessellation cell.

Funder

NSFC-ISF

Natural Science Foundation of China

Israel Science Foundation

China National 973 Program

Young Scholars Program of Shandong University

Publisher

Association for Computing Machinery (ACM)

Subject

Computer Graphics and Computer-Aided Design

Cited by 21 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Bending the light: Next generation anamorphic sculptures;Computers & Graphics;2023-08

2. Survey on computational 3D visual optical art design;Visual Computing for Industry, Biomedicine, and Art;2022-12-19

3. Fabricable Multi‐Scale Wang Tiles;Computer Graphics Forum;2022-08

4. Design of three-dimensional Voronoi strut midsoles driven by plantar pressure distribution;Journal of Computational Design and Engineering;2022-07-22

5. Computational Mirror Cup and Saucer Art;ACM Transactions on Graphics;2022-07-22

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3