Your Code Secret Belongs to Me: Neural Code Completion Tools Can Memorize Hard-Coded Credentials

Author:

Huang Yizhan1ORCID,Li Yichen1ORCID,Wu Weibin2ORCID,Zhang Jianping1ORCID,Lyu Michael R.1ORCID

Affiliation:

1. The Chinese University of Hong Kong, Hong Kong, China

2. Sun Yat-sen University, Zhuhai, China

Abstract

Neural Code Completion Tools (NCCTs) have reshaped the field of software engineering, which are built upon the language modeling technique and can accurately suggest contextually relevant code snippets. However, language models may emit the training data verbatim during inference with appropriate prompts. This memorization property raises privacy concerns of NCCTs about hard-coded credential leakage, leading to unauthorized access to applications, systems, or networks. Therefore, to answer whether NCCTs will emit the hard-coded credential, we propose an evaluation tool called Hard-coded Credential Revealer (HCR). HCR constructs test prompts based on GitHub code files with credentials to reveal the memorization phenomenon of NCCTs. Then, HCR designs four filters to filter out ill-formatted credentials. Finally, HCR directly checks the validity of a set of non-sensitive credentials. We apply HCR to evaluate three representative types of NCCTs: Commercial NCCTs, open-source models, and chatbots with code completion capability. Our experimental results show that NCCTs can not only return the precise piece of their training data but also inadvertently leak additional secret strings. Notably, two valid credentials were identified during our experiments. Therefore, HCR raises a severe privacy concern about the potential leakage of hard-coded credentials in the training data of commercial NCCTs. All artifacts and data are released for future research purposes in https://github.com/HCR-Repo/HCR.

Funder

The National Natural Science Foundation of China

The Research Grants Council of the Hong Kong Special Administrative Region, China

Publisher

Association for Computing Machinery (ACM)

Reference71 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3