Breaking the Barrier of 2 for the Competitiveness of Longest Queue Drop

Author:

Antoniadis Antonios1ORCID,Englert Matthias2ORCID,Matsakis Nicolaos3ORCID,Veselý Pavel3ORCID

Affiliation:

1. University of Twente, The Netherlands

2. University of Warwick, UK

3. Computer Science Institute of Charles University, Czech Republic

Abstract

We consider the problem of managing the buffer of a shared-memory switch that transmits packets of unit value. A shared-memory switch consists of an input port, a number of output ports, and a buffer with a specific capacity. In each time step, an arbitrary number of packets arrive at the input port, each packet designated for one output port. Each packet is added to the queue of the respective output port. If the total number of packets exceeds the capacity of the buffer, some packets have to be irrevocably evicted. At the end of each time step, each output port transmits a packet in its queue and the goal is to maximize the number of transmitted packets. The Longest Queue Drop ( LQD ) online algorithm accepts any arriving packet to the buffer. However, if this results in the buffer exceeding its memory capacity, then LQD drops a packet from whichever queue is currently the longest, breaking ties arbitrarily. The LQD algorithm was first introduced in 1991, and is known to be \(2\) -competitive since 2001. Although LQD remains the best known online algorithm for the problem and is of practical interest, determining its true competitiveness is a long-standing open problem. We show that LQD is 1.6918-competitive, establishing the first \((2-\varepsilon)\) upper bound for the competitive ratio of LQD , for a constant \(\varepsilon \gt 0\) .

Publisher

Association for Computing Machinery (ACM)

Reference35 articles.

1. Competitive buffer management for shared-memory switches

2. Online packet scheduling for CIOQ and buffered crossbar switches;Al-Bawani K.;Algorithmica,2018

3. On the Performance of Greedy Algorithms in Packet Buffering

4. N. Andelman, Y. Mansour, and A. Zhu. Competitive queueing policies for QoS switches. In Proceedings of the 14th ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 761–770, 2003.

5. Maximizing throughput in multi-queue switches

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3