Affiliation:
1. INRIA and TU München, France
2. Intel Labs
3. INRIA, France
Abstract
This article describes a technique that can reliably align arbitrary 2D depictions of an architectural site, including drawings, paintings, and historical photographs, with a 3D model of the site. This is a tremendously difficult task, as the appearance and scene structure in the 2D depictions can be very different from the appearance and geometry of the 3D model, for example, due to the specific rendering style, drawing error, age, lighting, or change of seasons. In addition, we face a hard search problem: the number of possible alignments of the painting to a large 3D model, such as a partial reconstruction of a city, is huge. To address these issues, we develop a new compact representation of complex 3D scenes. The 3D model of the scene is represented by a small set of
discriminative visual elements
that are automatically learned from rendered views. Similar to object detection, the set of visual elements, as well as the weights of individual features for each element, are learned in a discriminative fashion. We show that the learned visual elements are reliably matched in 2D depictions of the scene despite large variations in rendering style (e.g., watercolor, sketch, historical photograph) and structural changes (e.g., missing scene parts, large occluders) of the scene. We demonstrate an application of the proposed approach to automatic rephotography to find an approximate viewpoint of historical paintings and photographs with respect to a 3D model of the site. The proposed alignment procedure is validated via a human user study on a new database of paintings and sketches spanning several sites. The results demonstrate that our algorithm produces significantly better alignments than several baseline methods.
Funder
European Institute of Innovation and Technology
Google
MSR-INRIA Laboratory
Agence Nationale de la Recherche
Publisher
Association for Computing Machinery (ACM)
Subject
Computer Graphics and Computer-Aided Design
Cited by
77 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献