FEC: Efficient Deep Recommendation Model Training with Flexible Embedding Communication

Author:

Ma Kaihao1ORCID,Yan Xiao2ORCID,Cai Zhenkun1ORCID,Huang Yuzhen3ORCID,Wu Yidi3ORCID,Cheng James4ORCID

Affiliation:

1. The Chinese University of Hong Kong, Hong Kong, Hong Kong

2. The Chinese University of Hong Kong, Shenzhen, China

3. Meta, Menlo Park, CA, USA

4. The Chinese University of Hong Kong & KASMA PTE, LTD., Hong Kong, Hong Kong

Abstract

Embedding-based deep recommendation models (EDRMs), which contain small dense models and large embedding tables, are widely used in industry. Embedding communication constitutes the main cost for the distributed training of EDRMs, and thus we propose two strategies to improve its efficiency, i.e.,embedding tiering andpre-fetching. In particular, embedding tiering uses AllReduce to communicate popular embeddings that are accessed frequently. This is counter-intuitive as embeddings belong to the sparse embedding tables, but reasonable because the access pattern of popular embeddings resembles dense models. Pre-fetching starts communication early for embeddings that receive no updates such that they are removed from the critical path of training. We implement embedding tiering and pre-fetching in a system called FEC and compare it with the state-of-the-art systems on real datasets. The results show that FEC consistently outperforms the existing methods on all datasets, and its speed can be up to 6.65x and 2.42x in terms of embedding communication time and training throughput compared with the best performing baseline.

Publisher

Association for Computing Machinery (ACM)

Reference66 articles.

1. Accelerating recommendation system training by leveraging popular choices

2. Dan Alistarh , Demjan Grubic , Jerry Z Li , Ryota Tomioka , and Milan Vojnovic . 2017 . QSGD: communication-efficient SGD via gradient quantization and encoding . In Proceedings of the 31st International Conference on Neural Information Processing Systems. 1707--1718 . Dan Alistarh, Demjan Grubic, Jerry Z Li, Ryota Tomioka, and Milan Vojnovic. 2017. QSGD: communication-efficient SGD via gradient quantization and encoding. In Proceedings of the 31st International Conference on Neural Information Processing Systems. 1707--1718.

3. TensorOpt: Exploring the Tradeoffs in Distributed DNN Training With Auto-Parallelism

4. Jianmin Chen , Rajat Monga , Samy Bengio , and Rafal Jó zefowicz. 2016. Revisiting Distributed Synchronous SGD. CoRR , Vol. abs/ 1604 .00981 ( 2016 ). Jianmin Chen, Rajat Monga, Samy Bengio, and Rafal Jó zefowicz. 2016. Revisiting Distributed Synchronous SGD. CoRR, Vol. abs/1604.00981 (2016).

5. Wenqiang Chen , Lizhang Zhan , Yuanlong Ci , and Chen Lin . 2019 . FLEN: Leveraging Field for Scalable CTR Prediction. CoRR , Vol. abs/ 1911 .04690 (2019). Wenqiang Chen, Lizhang Zhan, Yuanlong Ci, and Chen Lin. 2019. FLEN: Leveraging Field for Scalable CTR Prediction. CoRR, Vol. abs/1911.04690 (2019).

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3