1. Peter Auer, Nicolo Cesa-Bianchi, and Paul Fischer. 2002. Finite-time analysis of the multiarmed bandit problem. Machine learning 47 (2002), 235–256.
2. R. Balakrishnan, T. Li, T. Zhou, N. Himayat, V. Smith, and J. Bilmes. 2022. Diverse Client Selection for Federated Learning via Submodular Maximization. In International Conference on Learning Representations.
3. N. Barroso E. Cámara M. Luzón G.G. Seco M.A. Veganzones and F. Herrera. 2020. Dynamic Federated Learning Model for Identifying Adversarial Clients. arxiv:2007.15030Available at https://arxiv.org/abs/2007.15030.
4. H. Cao, Q. Pan, and J. Liu. 2022. Birds of a Feather Help: Context-aware Client Selection for Federated Learning. In Proceedings of international Workshop on Trustable, Verifiable and Auditable Federated Learning in Conjunction with AAAI.
5. X. Chang, S.M. Ahmed, B. Guler, S.V. Krishnamurthy, A. Swami, S. Oymak, and A.K. Roy-Chowdhury. 2024. FLASH: Federated Learning Across Simultaneous Heterogeneities. arXiv preprint:2402.08769 (2024). Available at https://arxiv.org/abs/2402.08769.