Design and evaluation of a hybrid sensor network for cane toad monitoring

Author:

Hu Wen1,Bulusu Nirupama2,Chou Chun Tung3,Jha Sanjay3,Taylor Andrew3,Tran Van Nghia3

Affiliation:

1. Commonwealth Scientific and Industrial Research Organisation

2. Portland State University

3. The University of New South Wales

Abstract

This article investigates a wireless acoustic sensor network application—monitoring amphibian populations in the monsoonal woodlands of northern Australia. Our goal is to use automatic recognition of animal vocalizations to census the populations of native frogs and the invasive introduced species, the cane toad. This is a challenging application because it requires high frequency acoustic sampling, complex signal processing, wide area sensing coverage and long-lived unattended operation. We set up two prototypes of wireless sensor networks that recognize vocalizations of up to ninth frog species found in northern Australia. Our first prototype consists of only resource-rich Stargate devices. Our second prototype is more complex and consists of a hybrid mixture of Stargates and inexpensive, resource-poor Mica2 devices operating in concert. In the hybrid system, the Mica2s are used to collect acoustic samples, and expand the sensor network coverage. The Stargates are used for resource-intensive tasks such as fast Fourier transforms (FFTs) and machine learning. The hybrid system incorporates four algorithms designed to account for the sampling, processing, energy, and communication bottlenecks of the Mica2s (1) high frequency sampling, (2) thresholding and noise reduction, to reduce data transmission by up to 90%, (3) sampling scheduling, which exploits the sensor network redundancy to increase the effective sample processing rate, and (4) harvesting-aware energy management, which exploits sensor energy harvesting capabilities to extend the system lifetime. Our evaluation shows the performance of our systems over a range of scenarios, and demonstrate that the feasibility and benefits of a hybrid systems approach justify the additional system complexity.

Funder

National Science Foundation

Directorate for Computer and Information Science and Engineering

Publisher

Association for Computing Machinery (ACM)

Subject

Computer Networks and Communications

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3