Affiliation:
1. University of Erlangen, Erlangen, Germany
Abstract
Network lifetime has become the key characteristic for evaluating sensor networks in an application-specific way. Especially the availability of nodes, the sensor coverage, and the connectivity have been included in discussions on network lifetime. Even quality of service measures can be reduced to lifetime considerations. A great number of algorithms and methods were proposed to increase the lifetime of a sensor network—while their evaluations were always based on a particular definition of network lifetime. Motivated by the great differences in existing definitions of sensor network lifetime that are used in relevant publications, we reviewed the state of the art in lifetime definitions, their differences, advantages, and limitations. This survey was the starting point for our work towards a generic definition of sensor network lifetime for use in analytic evaluations as well as in simulation models—focusing on a formal and concise definition of accumulated network lifetime and total network lifetime. Our definition incorporates the components of existing lifetime definitions, and introduces some additional measures. One new concept is the ability to express the service disruption tolerance of a network. Another new concept is the notion of time-integration: in many cases, it is sufficient if a requirement is fulfilled over a certain period of time, instead of at every point in time. In addition, we combine coverage and connectivity to form a single requirement called connected coverage. We show that connected coverage is different from requiring noncombined coverage and connectivity. Finally, our definition also supports the concept of graceful degradation by providing means of estimating the degree of compliance with the application requirements. We demonstrate the applicability of our definition based on the surveyed lifetime definitions as well as using some example scenarios to explain the various aspects influencing sensor network lifetime.
Publisher
Association for Computing Machinery (ACM)
Subject
Computer Networks and Communications
Cited by
381 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献