Physics informed neural fields for smoke reconstruction with sparse data

Author:

Chu Mengyu1,Liu Lingjie1,Zheng Quan2,Franz Erik3,Seidel Hans-Peter1,Theobalt Christian1,Zayer Rhaleb1

Affiliation:

1. Max Planck Institute for Informatics, Germany

2. Institute of Software Chinese Academy of Sciences, China

3. Technical University of Munich, Germany

Abstract

High-fidelity reconstruction of dynamic fluids from sparse multiview RGB videos remains a formidable challenge, due to the complexity of the underlying physics as well as the severe occlusion and complex lighting in the captured data. Existing solutions either assume knowledge of obstacles and lighting, or only focus on simple fluid scenes without obstacles or complex lighting, and thus are unsuitable for real-world scenes with unknown lighting conditions or arbitrary obstacles. We present the first method to reconstruct dynamic fluid phenomena by leveraging the governing physics (ie, Navier -Stokes equations) in an end-to-end optimization from a mere set of sparse video frames without taking lighting conditions, geometry information, or boundary conditions as input. Our method provides a continuous spatio-temporal scene representation using neural networks as the ansatz of density and velocity solution functions for fluids as well as the radiance field for static objects. With a hybrid architecture that separates static and dynamic contents apart, fluid interactions with static obstacles are reconstructed for the first time without additional geometry input or human labeling. By augmenting time-varying neural radiance fields with physics-informed deep learning, our method benefits from the supervision of images and physical priors. Our progressively growing model with regularization further disentangles the density-color ambiguity in the radiance field, which allows for a more robust optimization from the given input of sparse views. A pretrained density-to-velocity fluid model is leveraged in addition as the data prior to avoid suboptimal velocity solutions which underestimate vorticity but trivially fulfill physical equations. Our method exhibits high-quality results with relaxed constraints and strong flexibility on a representative set of synthetic and real flow captures. Code and sample tests are at https://people.mpi-inf.mpg.de/~mchu/projects/PI-NeRF/.

Funder

Lise Meitner Award Postdoctoral Fellowship

European Research Council

Publisher

Association for Computing Machinery (ACM)

Subject

Computer Graphics and Computer-Aided Design

Reference78 articles.

1. An evaluation of optical flow algorithms for background oriented schlieren imaging

2. Peter Bauer , Alan Thorpe , and Gilbert Brunet . 2015. The quiet revolution of numerical weather prediction. Nature 525, 7567 ( 2015 ), 47--55. Peter Bauer, Alan Thorpe, and Gilbert Brunet. 2015. The quiet revolution of numerical weather prediction. Nature 525, 7567 (2015), 47--55.

3. A unified deep artificial neural network approach to partial differential equations in complex geometries

4. Robert Bridson . 2015. Fluid simulation for computer graphics . CRC press . Robert Bridson. 2015. Fluid simulation for computer graphics. CRC press.

5. Immersive light field video with a layered mesh representation

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3