TopoCut

Author:

Fang Xianzhong1,Desbrun Mathieu2,Bao Hujun3,Huang Jin3

Affiliation:

1. Ningbo University, China and Zhejiang University, China

2. Inria/Ecole Polytechnique, France

3. Zhejiang University, China

Abstract

Given a complex three-dimensional domain delimited by a closed and non-degenerate input triangle mesh without any self-intersection, a common geometry processing task consists in cutting up the domain into cells through a set of planar cuts, creating a "cut-cell mesh", i.e., a volumetric decomposition of the domain amenable to visualization (e.g., exploded views), animation (e.g., virtual surgery), or simulation (finite volume computations). A large number of methods have proposed either efficient or robust solutions, sometimes restricting the cuts to form a regular or adaptive grid for simplicity; yet, none can guarantee both properties, severely limiting their usefulness in practice. At the core of the difficulty is the determination of topological relationships among large numbers of vertices, edges, faces and cells in order to assemble a proper cut-cell mesh: while exact geometric computations provide a robust solution to this issue, their high computational cost has prompted a number of faster solutions based on, e.g., local floating-point angle sorting to significantly accelerate the process --- but losing robustness in doing so. In this paper, we introduce a new approach to planar cutting of 3D domains that substitutes topological inference for numerical ordering through a novel mesh data structure, and revert to exact numerical evaluations only in the few rare cases where it is strictly necessary. We show that our novel concept of topological cuts exploits the inherent structure of cut-cell mesh generation to save computational time while still guaranteeing exactness for, and robustness to, arbitrary cuts and surface geometry. We demonstrate the superiority of our approach over state-of-the-art methods on almost 10,000 meshes with a wide range of geometric and topological complexity. We also provide an open source implementation.

Funder

Natural Science Foundation of China

National Key Research and Development Program of China

Natural Science Foundation of Zhejiang Province

Publisher

Association for Computing Machinery (ACM)

Subject

Computer Graphics and Computer-Aided Design

Reference31 articles.

1. Robust and Efficient Cartesian Mesh Generation for Component-Based Geometry

2. Indirect Predicates for Geometric Constructions

3. Preserving geometry and topology for fluid flows with thin obstacles and narrow gaps

4. Chandrajit L. Bajaj and Valerio Pascucci. 1996. Splitting a Complex of Convex Polytopes in Any Dimension . In Proceedings of the Twelfth Annual Symposium on Computational Geometry (SCG '96) . Association for Computing Machinery, New York, NY, USA, 88--97. Chandrajit L. Bajaj and Valerio Pascucci. 1996. Splitting a Complex of Convex Polytopes in Any Dimension. In Proceedings of the Twelfth Annual Symposium on Computational Geometry (SCG '96). Association for Computing Machinery, New York, NY, USA, 88--97.

5. Fast, Exact, Linear Booleans

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3